
the approximate nature of the expression for p(r), there is no point in precise study of the 
question of shock wave formation, if we assume it possible to smooth the function in the im- 
mediate vicinity of the point r~ when necessary. 

Analysis of Eq. (4) reveals that at ~= > ~: the efficiency of compression increases, 
i.e., J(~:, ~2) > J(~), but compression of a solid target by the method based on the solu- 
tion described above with self-similarity index ~ = i at ~2 > a~ is impossible, since the 
constant c: must then exceed the value permitted by the energy specified. The latter can 
easily be demonstrated, since the solution in the vicinity of the origin is known and de- 
scribed by Eq. (2), and thus improvement of the technique described is impossible. In col- 
lapse of hollow target the constant c~ can be increased for the same total applied energy 
since the energy can be expended almost totally in piston work up to the moment when the 
piston trajectory intersects the singular characteristic going toward the center. After the 
piston is halted, the rarefaction wave produces a density distribution in the peripheral por- 
tion of the target with ~2 > ~, so that the efficiency of hollow target compression is in- 
creased. 
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MATHEMATICAL MODELING AND CALCULATION OF EXPLOSION 

EFFECT IN CONTINUOUS MEDIA 

G. A. Aleksee~, V. P. Korobeinikov, V. V. Markov, 
V. I. Khrupinov, and K. B. Sherstnev 

UDC 534.222.2+532.529 

In the conversion of explosion energy into electrical or mechanical energy, the follow- 
ing problem arises. There exists a plasma sphere of radius r,, characterized by parameters 
Po, Po, To. At time t = 0 there occurs an instantaneous expulsion of photons and high ve- 
locity microparticles from this sphere, and the sphere also begins to expand into a spheri- 
cal cavity, the space outside which is occupied by a continuous medium with parameters p~, 
p~, T: (Fig. i). The surrounding medium is assumed condensed and will be studied using a 
hydrodynamic description. We will also assume that the surrounding medium effectively ab- 
sorbs the energy of particles formed during the explosion, so that the major portion of the 
explosion energy is transferred to the medium in some region about the center of energy 
liberation. To define the parameters of the motion which develops it is necessary to develop 
a mathematical model of the flow to be studied, i.e., to write equations of motion for the 
continuous medium interacting with the particles and light radiation, and to specify initial 
and boundary conditions. 
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Fig. i 

The present study presents a mathematical model of these phenomena, and considers ex- 
plosion in a cavity surrounded by water. 

I. Equations of Motion. The complete system of equations describing behavior of the 
medium and the particle and photon flows propagating therein consists of the hydrodynamics 
equations which in this case must consider the contribution to forces acting on the medium 
and energy exchange with the medium of the particles and photons, and the transfer equations 
which consider scattering the absorption for particles and radiation. 

We have the continuity equation 

dp/d t  + 9divv ~ O. (i.i) 

where p is density and v is the velocity of the medium. We assume the particle density to 
always be low, so that the particles produce no significant contribution to the medium's 
inertial properties. 

The Navier--Stokes equation 

; t) dr i i "" i ~ s 
dt = V p-I :  V f  J + F(v ) + F ( , ) +  F(~). (1.2) 

where vjzij is the divergence of the viscous stress tensor 

T~J ~ 1 V  ~ r ~ q  V ~ / -  g~JVav h + ~2g V ~ V ,  ( 1 . 3 )  

where ~ and ~2 are the viscosity coefficients, generally dependent on density and tempera- 
ture of the medium. The forces appearing on the right side of Eq. (1.2), produced by the 

action on the medium of the particle flow (F~)) and the radiation ( '~ b(~)), may be expressed 

in the form 

F~)  ~ dPlI') ~J ,~ alP(R) ~ (i. 4) 
- (It VjT(p), ~(B) -- dt VJT(R)' 

( ~ ~J and T~) are momentum flow densities where P(r), P(n) are volume momentum densities; z(~ o :. 
4 

of particles and radiation. The quantities i)(v), p(~),~(v) ,T(R~ are expressed in integral 
form in terms of the particle and photon distribution ~ functions (corresponding to the func- 

7i 
tions presented below). The quantity l'(e~) in Eq. (1.2) is the force external with respect 
to the system of medium + particles + radiation. 

The heat increment equation 

dU 
dt 

where U is the internal energy. 

d (_~) t "" dq (e) (1.5) 

The second term on the right (Gibbs formula) expresses uncompensated heat, while eij = 
Viv~ + V~v i is the medium deformation rate tensor. The third term on the right of Eq. (1.5) 
is ~he e~ternal addition of heat per unit volume of medium. This heat contribution, reduced 
to unit mass of the medium, is composed of the following components: 
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dq (e) i j dq((~) aq}eR )) d"(~) "'~(ex) 
dt . . . . . .  -~V;(4V T) + --77-- -U --j.///////~-- + at ( 1 . 6 )  

Here the first term is produced by conventional thermal conductivity, while the thermal con- 
ductivity coefficient n may be dependent on density and temperature of the medium; the sec- 
ond and third terms are the heat added to a particle of the medium due to interaction with 
particle and radiation fluxes, respectively; the last term of Eq. (1.6) is the external heat 
added to the medium + particles + radiation system. 

In analogy to Eq. (1.4), we represent pdql~)~'dt and pdgl;~/dt in the form 

dc ,(~) d</(~ )) dl~( I~ # 
~(~) dli(p) If(p), p V , , , I l u o  , (1.7) P dt dt Vh dt dt 

w h e r e  E(p)  and E ( R ) d e n o t e  t h e  vo lume  e n e r g y  d e n s i t i e s  o f  p a r t i c l e s  and p h o t o n s ,  r e s p e c t i v e l y ,  
/ ,  h while 11~,) and ]](n) are the energy flux densities of particles and radiation. 

~, ii for the particle flow, just like E(R ) for the radia- The quantities 1~o), [lo), ~o) 
tion, can be expressed in terms of particle N or radiation 19 distribution Junctions. The 
function N is dependent on the spatial coordinates, the particle energy E, and the components 
of the unit vector mi. The quantity N(x ~, E, o)~)dl~df~ is the spatial density of number of 
particles in motion at a particular point with velocity vectors directed within the solid 
angle d~ surrounding the vector mi and energies within the interval (E, E + dE). Similarly, 
the function 19(xh, v, ~i) is defined so that the quantity (I/c)l./Ivd~ is the spatial density 
of radiant energy propagating at a given point within the limits of the solid angle dO. in 
the direction o)i and lying in the frequency range (v, v + dr). For the energy, momentum, 
and flux densities, we then have 

Eo)==fEiYdEdO,  E ( n ) = ~ f l y d v d ~ 2 ,  

- i  i �9 ~ 0  " Ilo') == ,I o) uENdLd. . ,  ll~tt) =:: j" o)iIvd~'d~, 

f 'i  i " i PO)= (olmouNdEd~, p~l~) = ~- o~ lvd~.'d(-2, 
t 

i j  " ' i i : . =  T(p) =- j' o)*(oSnou:NdEd(.2 , ~(u) i ~ 

where mo is the particle rest mass, and their velocity is u = 2~-E/mo. 

(1.8) 
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The functions N(xk, E, mi) and Iv(xk, v, mi) must satisfy the following particle and 
radiation transfer equations. 

The particle transfer equation [i] 

u dt + mhv#~N + s N - -  s  (E ' )  gu,)(E,  E ' ,  O, Q ' ) N ( . E ' ,  o ' ; * ~ " * o '  . -- -, s . . . . . . .  +rI(~,). (1.9) 
'. 0 ~i 

Here X = X a + Es, Xa is the macroscopic absorption section; I s is the particle scattering 
section; g(p) is the scattering function, the form of which is defined by additional hypoth- 
eses imposed upon elementary scattering and the properties of the particles participating. 

The quantities la, Zs, q(p) appearing in Eq. (1.9) may depend on density, temperature, 
or other physicochemical parameters of the medium, and like the scattering function must be 
additionally defined either experimentally or commencing from some theoretical assumption. 

Assuming localized thermodynamic equilibrium, the radiation transfer equation has the 
form 

oo 

,,,, d Iv  + m~'Vs.[v + k v l v  - kv (1 - -  kv) B~ (T)  + ~a .t l,,g~,(v, c dt ~ 
0 -q 

t 7 r * O  r ] , (,), (0', ~to) d.V Cg.~ .i" 

(i.i0) 

Here n v is the index of refraction for the medium at frequency ~; k v = k~v + ksv; X~ = 
ks~/k~; kay is the absorption coefficient; ks~ is the scattering coefficient for radiation 
at frequency ~. Speaking generally, these coefficients may depend on temperature or density, 
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and possibly other physicochemical characteristics of the medium, and are defined experi- 
mentally or theoretically. The function g~ is the scattering function, defined by supple- 
mentary means; the function B~(T) has the form 

2h~ a 1 
By(T):: 2 (ehW~,r_i)" (i.ii) 

By using transfer equations (1.9)-(1.11) one can obtain expressions for the forces 

d (e) and d ~(~) in Eq. (1.6) in terms t'(v) and F~R ) in Eq. (1.2) and the heat increments 77~q(v ) ,-3-f~(R ) 

of the particle and light quantum distribution functions. To do this it is sufficient to 
use Eqs. (1.4), (1.7), in which the right sides are calculated from the transfer equations 
by integrating the latter with a weight determined by Eq. (1.8). To close the system we 
must add to the above equations the equation of state of the medium, T = F(U, p), p = ~(U, p). 

2. Approximate Analytical Description of the Effect of Microparticle Flux on the Ab- 
sorbing Medium. We will consider the simplest possible model of interaction of the high- 
energy particle flux with the homogenous medium, initially at rest. We will assume further 
that the processes of particle absorption and scattering by the medium may be described ap- 
proximately by some effective absorption coefficient. Moreover, we assume that the particles 
are absorbed by the medium and transfer energy to the latter in a time so brief that the 
medium does not become significantly displaced during the transfer. For this to be true it 
is obviously necessary that the mean time over which a particle is absorbed be much less 
than the characteristic hydrodynamic time of the problem. With this condition, the solution 
of the problem of behavior of the medium and particle and radiation fluxes propagating there- 
in divides into two stages. The first stage is the solution of the transfer equations in 
the nonmoving medium with corresponding initial and boundary conditions, with subsequent de- 
termination of distributions of energy and momentum transferred to the medium by particles 
and energy due to absorption and scattering. Thus, the effect of particles and radiation 
on motion of the medium reduces to creation of a certain initial state, which must be taken 
as the initial conditions for solution of the thermodynamic problem. The second stage con- 
sists of solution of the hydrodynamic problem of motion of the medium with special (deter- 
mined in the first stage) initial conditions. 

We will consider the first stage of the problem, i.e., determining the state of the 
medium which is produced as a result of scattering and absorption by the medium of the high- 
energy particle fluxes. For definity we will assume that the particles exit from the center 
of a spherical cavity of radius ro, outside which all space is filled with the absorbing 
medium. 

As has already been indicated, we will assume that scattering and absorption can be 
described by the transfer equation with some effective absorption coefficient G, so that 
the transfer equation in the medium at rest will have the form 

t d N  
~t + ~ v ' ~ N  + ~@ (r -- ro) N = 6 (t) 5 (r), 

w h e r e  @( r - -  r0) i s  a O - f u n c t i o n  d e s c r i b i n g  " i n c l u s i o n ' !  o f  a b s o r p t i o n  i n  t h e  medium o u t s i d e  
t h e  c a v i t y ;  No i s  t h e  t o t a l  number  o f  p a r t i c l e s  e m i t t e d  i n t o  t h e  medium and v i s  t h e i r  
velocity. On the right of this equation is a term describing a point impulsive particle 
source located at the origin. 

For r > ro the solution of this equation has the form 

N "Y0 5 ( r - -  vt) e-~("-ro)6 ( ~ )  
: ~@(t) r2 -- o . (2.1) 

Integration of Eq. (2.1) over angles provides an expression for the spatial particle density: 

i N  -~("-r~ n ( r , t ) =  d ~ =  N~ @(t) 6 ( r - - v t ) e  
4sr z 

For the volume densities of energy and momentum transferred to the medium we have 

dQOOdt -- f EINdfl= E ~  
( 2 . 2 )  

, dp(p)dt -- f ~176 : m~ t)~. 
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By integrating Eq. (2.2) over time, we obtain an expression for the total energy and momentum 
density transferred to the medium: 

Q(v) 4~9p I e 

am,)'N,e-~(r-r0)(m0v ) (2.3) 

Here ~ = EoN o is the total energy carried off by particles; p: is the density of the absorb- 

ing medium. In the problem of concern here, we may neglect the effect of PoD. 

We will now calculate the energy liberated when the high-energy particle source is a 
highly compressed plasma sphere of radius ~i0 -= cm and mass of ~i0 -3 g, expanding in a spher- 
ical cavity surrounded by water. During the period of sphere particle expulsion ~I0 -~z sec 
let there by expelled into the surrounding medium No = i0 z9 particles with mean energy Eo 
14.1 MeV per particle, carrying off 70% of the sphere's energy. The remainder of the sphere's 
initial energy is carried off by radiation or remains within the plasma as thermal energy of 
the expanding remains. 

Substituting these quantities in Eq. (2.3) and taking the density of water 0~ = i g/cm a 
and the water absorption coefficient u = 0.05 cm -I, we obtain 

Q!2,) .... 2" t0~ ~--qT-. ] \ 7  ] '  ( 2 . 4 )  

It is evident from Eq. (2.4) that at small cavity dimensions (ro ~ 1 cm) a significant amount 
of heat is liberated near the cavity boundary, while as cavity size increases the quantity 
of heat drops abruptly (at ro = 40 cm Q(p) = 13 cal/g). 

3. Solution of the Particle Transfer Equation. A simple approximation of the results 
of interaction between particles and the absorbing medium was given above. In view of the 
difficulties of analytically estimating errors in the medium's energy distribution, it is 
expedient to perform a direct calculation of the particle transfer by the Monte Carlo method. 
This technique allows solution of the complete integrodifferentia! transfer equation in which 
the scattering integrand is represented as the sum over all possible processes with secondary 
particle output. It will be assumed that energy transfer takes place instantaneously and 
directly at the collision point, and is not accompanied by any significant radiation. The 
goal of such a calculation will then be determination of the spatial distribution of the 
energy transferred by particles to the medium in the retardation process. The characteris- 
tics of the medium will be considered constant in solving the problem. 

4. Solution of the Problem of Medium Motion. This problem may be solved by both an- 
alytical and numeric methods. If the medium is relatively incompressible (water) and the 
cavern radius is sufficiently large, then the perturbations will be weak and the flow of 
the medium may be studied analytically in the acoustic approximation. But if the cavity 
radius ro is small and a significant amount of energy is liberated into the medium then 
shock waves will develop and the problem must be solved numerically using the finite differ- 

ence method. 

In determining the initial parameters of the water only the total contribution of energy 
absorbed from the particle and radiation fluxes will be considered, and the quantities 
~ p ) ,  ~ i <~ H(R),F0,),F(e), etc., [see Eq. (1.8)] will be neglected. The distribution of internal en- 
ergy U within the water thus obtained is used together with the equation of state p = f(U, 
p) at a fixed density value to obtain the pressure distribution. The initial state of the 
nonmoving plasma sphere is considered homogeneous with a specified mass M = 10-ag and density 
Po = 250 g/cm a. The plasma itself is considered an ideal gas with specific heat ratio y = 
~/3. To estimate the effect of radiation on the flow pattern, calculations were performed 
both with and without radiation. In all cases it was assumed that 30% of the initial energy 
remains within the plasma in the form of thermal energy. 

The water was considered an ideal liquid with the following equations of state [2]: 

thermal equations of state [2] 

at : ~ P ~ 2,3 g~m a p = p . ( l  - -  o,o12r)i) + 4,Tpl ( r  - -  273~ 
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p~ = [3o5o(p:,~ - t ) ] , : [ : t  + o,7(p - 1)~,1, 

at p < t g ,cm a p =~ $4 -~?Op/ @ ~,7 p / ( T  ~ 

, -6 , ( : i ( t  - -  p)o,~Tpo,'-'5 at 

$ -= l ( ) ( l  ...... :,) -Z- 6 6 ( t  - -  p~) - -  2 7 0 ( I  - -  p)a  a t  

/ =~ (i - ;  3,7)p - -  2p'-' -}- 7,27p~)/(1 -}- 1.OOpG); 

0 ~< p ~< O,8g ,'em~, 
O , 8 < p ~ < l ,  

(4.l) 

caloric equation of state 

U = c v T  @ ~ ' ( p ) ,  ( 4 . 2 )  

where c V is the heat capacity at constant volume, which is assumed constant. The function 
3-(p) is defined such that both equations of state agree with each other. 

In accordance with Eqs. (4.1), (4.2), the known distribution over coordinate r of the 
energy transferred to the water is used to calculate the initial pressure distribution. For 
comparison, Fig. 2 shows the initial pressure distributions p(r) in the water for Eo = i0 :~ 
erg and ro = 1 cm, obtained by Eq. (2.3) (solid line) and by the Monte Carlo method (points). 
The good agreement of the results is evident. 

Below we will present results of calculation of the flow produced by liberation of an 
energy Eo = 1014 erg at several values of ro with a fixed thickness of the spherical water 
layer equal to 50 cm. It is assumed that the energy absorbed by the water comprises 70% of 
Eo. Moreover, it is assumed that the water mass is bounded externally by an absolutely 
rigid spherical wall. 

The hydrodynamic calculations were performed by the finite difference method of [3] in 
Lagrangian coordinates. Within the framework of this method use of equations of state in 
the form of Eqs. (4.1), (4.2) avoids iteration procedures in determining the thermodynamic 
parameters of the water from the thermal increment equation. 

The calculations revealed that the process develops in the following manner. Initially, 
the plasma cloud almost instantaneously radiates energy which is absorbed by the water, and 
the plasma temperature falls to 104 ~ During this period the plasma and water remain prac- 
tically immobile. Then intense expansion of the plasma into the cavity commences. With a 
radius ro = i0 cm the outer boundary of the plasma reaches the boundary of the water layer 
in a period of ~6 ~sec. Almost all the plasma internal energy is transformed into kinetic 
energy, and the pressure within the plasma decreases by several orders of magnitude from the 
original value. This moment corresponds to curve 1 of Fig. 3, which also shows the pressure 
distribution in the medium at certain subsequent times. It should be noted that over such 
a brief time the parameters of the water are practically unchanged. In the following time 
because of propagation of compression and rarefaction waves in the gas and water the param- 
eters of both media change intensely as can easily be seen in the same figure (curves 2-7). 
In particular, zones of reduced pressure are formed periodically both within the depths of 
the water (curves 2-5) and near the rigid spherical shell (curves 6, 7). It is interesting 
that the boundary between gas and liquid oscillates intensely. Its displacement with time 
for ro = 1 cm is shown in Fig. 4. The pressure on the wall also oscillates intensely, as 
shown by the solid curve of Fig. 5 (the dashed curve is for absence of radiation from the 
plasma). Formation of a reduced pressure zone which is preserved for a relatively lengthy 
period can easily be seen. For comparison Fig. 6 presents the time variation of pressure 
momentum at the wall with consideration of (solid curve) and in absence of (dashed curve) 
radiation. 

Thus, direct calculation indicates the development of a unique oscillatory process in 
the retardant (water) and gas cavity. Consideration of viscosity and various losses upon 
reflection from the external boundary will make this process a self-damping one. 
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